4-Coumarate:coenzyme A ligase has the catalytic capacity to synthesize and reuse various (di)adenosine polyphosphates.
نویسندگان
چکیده
4-Coumarate:coenzyme A ligase (4CL) is known to activate cinnamic acid derivatives to their corresponding coenzyme A esters. As a new type of 4CL-catalyzed reaction, we observed the synthesis of various mono- and diadenosine polyphosphates. Both the native 4CL2 isoform from Arabidopsis (At4CL2 wild type) and the At4CL2 gain of function mutant M293P/K320L, which exhibits the capacity to use a broader range of phenolic substrates, catalyzed the synthesis of adenosine 5'-tetraphosphate (p(4)A) and adenosine 5'-pentaphosphate when incubated with MgATP(-2) and tripolyphosphate or tetrapolyphosphate (P(4)), respectively. Diadenosine 5',5''',-P(1),P(4)-tetraphosphate represented the main product when the enzymes were supplied with only MgATP(2-). The At4CL2 mutant M293P/K320L was studied in more detail and was also found to catalyze the synthesis of additional dinucleoside polyphosphates such as diadenosine 5',5'''-P(1),P(5)-pentaphosphate and dAp(4)dA from the appropriate substrates, p(4)A and dATP, respectively. Formation of Ap(3)A from ATP and ADP was not observed with either At4CL2 variant. In all cases analyzed, (di)adenosine polyphosphate synthesis was either strictly dependent on or strongly stimulated by the presence of a cognate cinnamic acid derivative. The At4CL2 mutant enzyme K540L carrying a point mutation in the catalytic center that is critical for adenylate intermediate formation was inactive in both p(4)A and diadenosine 5',5''',-P(1),P(4)-tetraphosphate synthesis. These results indicate that the cinnamoyl-adenylate intermediate synthesized by At4CL2 not only functions as an intermediate in coenzyme A ester formation but can also act as a cocatalytic AMP-donor in (di)adenosine polyphosphate synthesis.
منابع مشابه
Diadenosine polyphosphates (Ap3A and Ap4A) behave as alarmones triggering the synthesis of enzymes of the phenylpropanoid pathway in Arabidopsis thaliana
It is known that cells under stress accumulate various dinucleoside polyphosphates, compounds suggested to function as alarmones. In plants, the phenylpropanoid pathways yield metabolites protecting these organisms against various types of stress. Observations reported in this communication link these two phenomena and provide an example of a metabolic "addressee" for an "alarm" signaled by dia...
متن کاملT4 RNA ligase catalyzes the synthesis of dinucleoside polyphosphates.
T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of l...
متن کاملSynthesis of dinucleoside polyphosphates catalyzed by firefly luciferase and several ligases.
The findings presented here originally arose from the suggestion that the synthesis of dinucleoside polyphosphates (Np(n)N) may be a general process involving enzyme ligases catalyzing the transfer of a nucleotidyl moiety via nucleotidyl-containing intermediates, with release of pyrophosphate. Within this context, the characteristics of the following enzymes are presented. Firefly luciferase (E...
متن کاملCaffeine effect on adenosine deaminase catalysis: A new look at the effect of caffeine on adenosine deaminase activity
The effect of physiological concentrations of caffeine (purified from Persian tea) on adenosine deaminase (ADA) activity at physiological and pathological concentrations of adenosine (as substrate) in 50 mM Tris-HCl buffer (pH 7.3) at 37°C was investigated, using UV-VIS spectroscopy. ADA exhibited a bi-phasic activity behavior and both phases showed positive cooperativities indicating adenosine...
متن کاملCaffeine effect on adenosine deaminase catalysis: A new look at the effect of caffeine on adenosine deaminase activity
The effect of physiological concentrations of caffeine (purified from Persian tea) on adenosine deaminase (ADA) activity at physiological and pathological concentrations of adenosine (as substrate) in 50 mM Tris-HCl buffer (pH 7.3) at 37°C was investigated, using UV-VIS spectroscopy. ADA exhibited a bi-phasic activity behavior and both phases showed positive cooperativities indicating adenosine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 131 3 شماره
صفحات -
تاریخ انتشار 2003